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Fast Monte Carlo algorithm for nonequilibrium systems
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A fast method for the Monte Carlo solution of the balance equations that arise in nonequilibrium thermo-
dynamics is suggested. It is applicable to chemical kinetics, reaction-diffusion processes, fluid dynamics, and
heat conduction. The method is based on a multivariate master equation that is constructed in such a way that
the simulation algorithm avoids time-consuming transition selection procedures, and thus becomes particularly
efficient. For the example of a large chemical reaction scheme, the proposed method is shown to perform
significantly faster than conventional methods, which rely on a birth-and-death master equation in discrete

occupation number space.
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Monte Carlo methods are a standard tool for the study of
equilibrium properties (see, e.g., [1]) and are also widely
used to investigate nonequilibrium situations, such as chemi-
cal reactions and reaction-diffusion processes [2-5]. These
systems are most conveniently described by multivariate
master equations, which describe reactions as a birth-and-
death process and diffusion as a collective random walk
[6-10]. Recently similar master equations were also shown
to offer a systematic and numerically efficient approach to
fluctuating hydrodynamics, fluid turbulence, and heat con-
duction [11-13].

For the purpose of this letter, it is important to recall two
fundamental aspects of the master equation approach to non-
equilibrium simulations: First, the master equation must be
consistent with the macroscopic description from nonequilib-
rium thermodynamics, which is usually given in terms of
balance equations for the conserved quantities, e.g., mass,
momentum, energy, and particle number density. The consis-
tency condition is that in the macroscopic limit the expecta-
tion values of the corresponding stochastic quantities obey
these balance equations. Furthermore, it is possible to de-
mand consistency of the fluctuations obtained through the
master equation with those predicted by the theory of fluc-
tuating hydrodynamics by Landau and Lifshitz [14]. Second,
rather than solving the master equation directly as a differ-
ential equation for a probability density, the simulation algo-
rithm generates a sample of realizations (or paths) of the
stochastic process from which the quantities of interest are
estimated as ensemble averages.

Most applications of the master equation approach have
up to now been on chemical systems and reaction-diffusion
processes, where the stochastic variables are discrete particle
numbers. Here, the selection of the next event (or state tran-
sition) is the time-critical part of the simulation algorithms,
and much effort has been dedicated to its optimization
[1-3,15-17]. On the other hand, the introduction of continu-
ous instead of discrete stochastic variables may result in a
significant speedup, as it has been already demonstrated for
the case of two-dimensional turbulence simulations [18]. The
basic idea is to circumvent time-consuming selection and
bookkeeping procedures by assigning equal rates to all tran-
sitions, but giving them appropriately varying transition step
widths.

1063-651X/96/53(4)/4232(4)/$10.00 53

Fast simulations can thus be performed whenever it is
possible to construct a stochastic process whose simulation
algorithm assigns equal rates to all transitions and which is
consistent with nonequilibrium thermodynamics. The pur-
pose of the present report is to outline the method in general,
and to compare its numerical performance to methods that
are based on a birth-and-death master equation. Since we are
going to present a simulation example from chemical kinet-
ics, notation and terminology will be adapted to chemical
kinetics.

Let us briefly recall the usual birth-and-death master
equation description of chemical reactions [10]: The state of
the system is described by a set of integer stochastic occu-
pation numbers N, . If the system is not homogeneous in
space, then a discrete partition of space can be introduced in
the usual way [7]. N, is interpreted as the number of particles
of a species in a space cell, s labeling both species and cells.
The connection with the macroscopic description is made
through interpreting the expectation values

1
=g V) 1)

as the macroscopic concentrations, {) denoting the volume of
the space cells.

Now we generalize this approach and consider a system
that is described by a set of real-valued stochastic variables
(x1,...,x,)=x, where x,eR. The probability of finding
the system in a state within the n-dimensional interval
[x,x+dx] at time ¢ is given by P(x,¢)dx. In analogy to (1)
the macroscopic variables are obtained through

cs=(xs)

and the time evolution of the probability density P(x,t) is
described by a master equation

%P(x,t) = J dx"{w(x,x")P(x",t)—w(x',x)P(x,t)}.

2

The transition rates w(x,x’) are specified as follows: We
require that all realizations of the stochastic process are
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piecewise constant and that there is only a finite number R of
transitions that all have the same rate:

| R
w(x,x')ZE;)\gl Sx—by(a,x")). 3)

Here, 7 is the typical time scale of the system, and it defines
the time unit in which all times are measured throughout this
paper. « is a dimensionless scaling parameter that we are
free to introduce in this ansatz. Its role is similar to that of
the volume () in the birth-and-death master equation. The
index A labels the different possible transitions, and the func-
tions b, specify these transitions as follows: If at time 7, the
transition X occurs, and the system has been in state x’ just
until 7y, it is in state b,(a,x’) immediately afterwards
[13,18]. The choice of the b, depends on the specific system
to be simulated and is guided by two requirements: (i) ther-
modynamic consistency, as mentioned above, and (ii) nu-
merical efficiency. In the following we shall see in detail how
these requirements can be employed to choose suitable tran-
sitions b, .

The thermodynamic consistency conditions are derived
using an expansion in powers of the parameter « which is
completely analogous to van Kampen’s well-known system
size expansion [10]. Thus, the first requirement on b, is that
it depends on « such that

by(a,x)=x+aBy\(x)+0(a?), 4)

where (3, is a differentiable function that does not depend on
a. The basic idea of the expansion is to split the stochastic
dynamics of x into a large deterministic part ¢ and a smaller
stochastic part 7, i.e., to set x=c+ \/;77. Inserting this an-
satz into the master equation, expanding the b, functions
according to (4), and sorting the terms with respect to their
order in «, we obtain the following results: The leading or-
der terms are of order &~ ', and thus they are required to
cancel out if the expansion is to converge in the limit
a—0. This leads to the following ordinary system of differ-
ential equations (“the macroscopic equation”) for
c=(cy,...,Cp)

d 1 §
Zc0=7 2 A, (5)

The next-to-leading order is o’ and the corresponding
terms constitute a linear Fokker-Planck equation for the
probability density I1(7,7) of the new stochastic variable #

M 1 & < ( IBy.s(c) 3(n,10)
D D T R

1 o)
T3 BBy s(€) g

All remaining higher order terms of the expansion become
arbitrarily small as o goes to zero.

The following conclusions can be drawn from the expan-
sion: First, the macroscopic equation and the Fokker-Planck
equation depend on the transitions b, only via the B,, i.e.,
terms of order o in (4) have no effect and b, (a,x) might as
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well be chosen such that it only depends linearly on «. Sec-
ond, any macroscopic equation can be constructed by an ap-
propriate choice of the transitions b, . Moreover, the choice
of these transitions is not uniquely determined by the mac-
roscopic equation: as is seen from Eq. (5), any set of func-
tions b, for which the right-hand side of (5) is the same is
equally admissible. Third, under certain conditions this arbi-
trariness can be employed to obtain the desired fluctuating
behavior, which is described by the diffusion matrix in the
Fokker-Planck equation [13].

These results are strictly valid only in the limit «— 0, but
simulations are always performed with finite «. This is no
serious problem however, since Monte Carlo methods have
some statistical error anyway, due to the finiteness of the
sample of realizations that is generated. Thus, « can always
be chosen sufficiently small such that the systematic error
caused by the finiteness of « is negligible in relation to the
statistical error. This statement will be illustrated in the ex-
ample.

Let us now turn to the numerical treatment of the master
equation. The simulation algorithm which generates a real-
ization of the Markov process defined by (2) and (3) is as
follows:

(i) Set the state variables (x;, ... ,x,) to their initial val-
ues and set the time step counter z=0.

(ii) Draw a uniformly distributed random number N\ from
the set {1, ...,R}.

(iii) Perform the transition x— b, (a,x).

(iv) Increment z by 1, and if not finished, go to (ii).

(v) The elapsed time ¢ is the sum of z independent, expo-
nentially distributed random time steps with mean a7/R.

Since z typically is very large, setting r=za7/R is a good
approximation according to the central limit theorem, and no
random numbers need to be generated for the time step. We
see that the selection of the next transition simply amounts to
drawing a uniformly distributed random number, and after
the transition no further auxiliary variables need to be up-
dated. Since typically the state vector x has many compo-
nents, it is computationally advantageous if each single b,
works only on a few components of x, and leaves the rest of
them unchanged.

In order to compare the method’s numerical performance
with that of conventional schemes that are based on a dis-
crete birth-and-death master equation, let us now consider a
simple example from chemical kinetics, namely, an irrevers-
ible polymerization (or coagulation) reaction [19]. Each
chain length or particle size r constitutes a separate species
M, , and reactions of the type

k

rs

Mr+Ms__> Mr+x (6)

are possible for any pair (r,s). Here, k,; denotes the reaction
rate.

In the proposed method, the stochastic variable x, now
stands for the concentration of M . The thermodynamical
consistency condition is that its expectation value c¢,={x,)
obeys the macroscopic rate equations corresponding to the
reaction scheme (6). One can easily verify that the condition
is satisfied if the transitions b, =b,, are chosen as
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The discrete birth-and-death master equation correspond-
ing to the reaction scheme (6) can be found explicitely in
reference [4]. It depends on the volume () of the reaction
vessel. Choosing an appropriate length unit, ) equals the
total number of monomers. In the simulation of the discrete
process, the selection of the next transition is the time-
critical part, and it can be implemented in several ways.
First, there are the rather simple linear search [2] and the
rejection method [1]. A modification of the rejection method
is the null-process method [3]. Furthermore, there is a variety
of more refined methods where the set of possible transitions
is arranged in classes, or more generally in a tree, and the
selection of the transition is performed by searching through
the tree, beginning at its root [15—17]. Each method requires
a set of variables that depend on the transitions rates, and
have to be updated after each transition. We implemented the
following schemes: linear search [2], rejection method [1],
and a multilevel tree search method [15] with 2, 4, and 10
levels.

In order to have an exact analytical solution of the rate
equations that belong to the reaction scheme (6) as reference,
we employed the trivial kernel k,,=2 X 10° 7~ ! together with
the initial condition ¢;(0)= &, [19]. For the benchmarking,
the simulation was run from time r=2.5X10"%r to
t=10"37. The simulation programs using the different algo-
rithms were written as similar as possible and run on the
same machine (IBM RS/6000).

In order to make a fair comparison between the different
algorithms one must take into account that they do not solve
the master equation exactly, but rather generate a sample of
realizations of the stochastic process, from which the con-
centrations ¢, are estimated through the sample averages
¢,. Consequently, the CPU time consumption of an algo-
rithm must be related to the accuracy of its results. Using the
exact solution ¢{*(¢) of the rate equations, the error can be
defined as

1 n
o= \/ PR ORINOND ™

Then there are two sources of error: (i) A systematic error,
which stems from the fact that in the simulations « respec-
tively ) are finite, whereas the rate equations assume the
macroscopic limit a«— 0, respectively {)—o0. (ii) A statisti-
cal error, which is caused by the finiteness of the sample
generated in the simulation. Here we are interested in the
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FIG. 1. CPU time consumption 7T cpy that is required to achieve
an accuracy &~ 2 of the Monte Carlo simulation results [see Eq. (7)].
The slopes of the lines are used to measure the efficiencies of the
different algorithms. The solid, dotted, and dash-dotted lines corre-
spond to the suggested algorithm with different values of «, and
their time axis is on the right side of the plot. The dashed line is the
result of simulations of the birth-and-death master equation using
the linear search selection method (0 =2.5X10°). Its time axis is
on the left-hand side of the plot.

case where the systematic error is much smaller than the
statistical error. Then the more realizations are generated, the
smaller becomes the error, and generically the reciprocal of
the error will be proportional to the root of the sample size.
This can in fact be verified in Fig. 1, where the total CPU
time (which is proportional to the number of realizations) is
plotted . against the reciprocal of the squared error at
t=10"37. We can see that the curves are roughly straight
lines. Their slope is a measure of the “CPU time consump-
tion per accuracy,”” and thus the lower the slope, the higher is
the efficiency of the algorithm.

The fact that the lines for different « have nearly the same
slope can easily be understood: When varying «, the CPU
time per realization increases proportionally to 1/«, but the
number of realizations necessary to achieve a given accuracy
decreases by the same factor, such that the total CPU time
remains constant. An analogous trade-off is found in the
choice of € in the discrete master equation. This trade-off
may be used for efficient load-balancing when the realiza-
tions are generated in parallel on multiple CPUs [20].

Noting the different ordinate scales in Fig. 1, we see that
the method proposed here is 65 times faster than simulations
of the discrete master equation using the linear search selec-
tion method. In exactly the same manner the other selection
schemes were benchmarked, which lead to the results sum-
marized in Table I. It is no question that such numbers de-
pend very much on the type of problem, as well as on the
implementation. Important factors are the inhomogeneity of
the distribution of transition rates (respectively widths), the
number of variables that have to be updated after each tran-
sition, and the speed of the random number generator. How-
ever, the presented results are meaningful beyond the par-
ticular numerical example that we have chosen here. In the
following we shall see that a significant speedup can be
achieved with the suggested method for a large class of
simulation problems.



53 BRIEF REPORTS

TABLE I. CPU times required for the different algorithms to
solve the test problem to a given accuracy (see text). Shown are the
factors by which the other methods are slower than the method
proposed in this report.

CPU time
Proposed method 1
Linear search 65
Rejection method 325
Two-level tree 94
Six-level tree 225
Ten-level tree 394

First, consider the relative performance of the different
selection schemes in the discrete simulations. The rejection
[1] and null-process [3] method are good for homogeneous
situations, whereas they become extremely slow when the
transition rates vary in a wide range, since a lot of time is
wasted in rejection steps or null processes. This is confirmed
by our results. Generally, the linear search method [2] is
slow. However, in the present example, it performs very
well, since the transition rates are, for the given initial con-
dition and the considered time range, sharply peaked near the
origin (r,s small), and the linear search starts at the right
end. When the distribution of transition rates is quite inho-
mogeneous, tree methods are reported to perform the fastest
[15]. How does this comply with our results? Besides the
time consumption of the actual search for the next transition
one must as well consider the amount of bookkeeping for
maintaining the data structure. Therefore at least two cases
must be distinguished:

(i) After a transition, only a small number of transition
rates is changed. This is typical of reaction-diffusion systems
with a small number of species and a large number of spatial
cells. Clearly, a reaction within one cell does not affect the
rates in the others, and a diffusion step only affects the rates
of the two cells involved. In these cases the updating even of
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a complicated data structure like a tree is not computation-
ally expensive, and the bookkeeping time is in general neg-
ligible compared to the search time.

(ii) A transition changes a large number of transition rates.
This is typical of complex chemical reactions systems where
the number of species is large and each species can react
with all or many of the others. The presented aggregation or
polymerization reaction is of this type. Our results indicate
that tree or classification methods become inefficient for sys-
tems of case (ii), since the bookkeeping requires much time.

In contrast, the method proposed here is by construction
not diverted by time-consuming selection and bookkeeping
procedures, and for the given problem proves to be about 65
times faster than the fastest discrete algorithm.

How is the performance of our method effected by the
distribution of the transition widths? Obviously it is expected
to work best if the transitions are all of the same order of
magnitude. On the other side, if there are a few large transi-
tions and many small ones, a lot of CPU time is wasted on
simulation steps that only make insignificant changes in the
variables. Furthermore, the CPU time consumption is di-
rectly proportional to the number of possible transitions.
Therefore, the set of possible transitions should not contain
transitions that do not practically occur in the simulation.
Qualitatively, the situation resembles very much the one en-
countered with the rejection method.

Note that the presented simulation example is not biased
towards the proposed method: indeed, the transition rates,
resp. widths, do vary in a wide range. This statement is veri-
fied by the good performance of the linear search compared
to the other traditional methods, as mentioned above. The
suggested method performs remarkably well even under
these conditions.

Concluding, the method proposed in this report can be
expected to significantly outperform the conventional algo-
rithms whenever the simulated system is of case (ii). It offers
an efficient and uncomplicated approach to nonequilibrium
simulations.
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